WebQuest Matemáticas Geometría Las Matemáticas De Las Alcantarillas
Las Matemáticas De Las Alcantarillas
Publicado el 27 Septiembre de 2013
Autor: Azucena Astrid Riechert
Introducción
Este proyecto pretende observar y relacionar como la matemática y la geometría están presentes permanentemente en nuestra vida cotidiana. En este caso vamos a explorar acerca de las alcantarillas que vemos en nuestras calles y cómo podemos relacionarlas con un número muy famoso que tal vez ya conozcas.
Ficha técnica
Área:Matemáticas
Asignatura:Geometría
Edad: No hay restriccion de edad
Herramientas:
Audio
Auto Aplicaciones
Bases de datos
Blogs
Códigos QR
Cómics
Diagramas de flujo - proceso
Encuestas
Escritura colaborativa
Etiquetado social
Fotografía
Gráficas
Hojas de cálculo
Infografías
Notice: Undefined offset: 99 in /home/edutek/eduteka.net/proyectos/gp/webquest/ver.php on line 144
Tarea
.
Se realizará en grupos de hasta 4 integrantes.
Tiempo: 9-10 clases aproximadamente
Se presentará un informe por escrito y la exposición grupal del proyecto mediante una presentación multimedia, exposición verbal o video.
Procesos
.
Actividad 1:
a)Recorrer las calles de tu barrio, observar las tapas de la alcantarillas que encuentres y fotografiarlas (algunas de estas fotos deberán estar en el trabajo final).Distinguirlas utilizando alguna referencia.
b)Tomar las siguientes medidas ,las necesitarás para confeccionar una tabla con los datos obtenidos:
-Perímetro de la tapa de alcantarilla.
-Diámetro de la tapa.
Actividad 2: Contestar las siguientes preguntas
a)¿ Qué son y para qué se construyen las alcantarillas?
b)¿Por qué te parece que las tapas de las alcantarillas son redondas? ¿Son todas del mismo tamaño?¿Son todas redondas?
c)¿Cómo se llama geométricamente, su forma ?
d)¿Por qué las alcantarillas tienen esta forma?
e)¿En otros lugares del mundo también son de esta forma?. Proponé un ejemplo (buscar imagen y especificar el lugar).
e)¿Por qué te parece que en los dibujitos las “tortugas Ninjas” viven en las alcantarillas?
Actividad 3: Relacionando medidas
a)Construir una tabla de datos donde figuren:
-Perímetros de las tapas
-Diámetros de las tapas
-Cociente de la división entre el perímetro y el diámetro de las tapas (usando los decimales que aparecen en el visor de la calculadora).
b)¿Qué conclusiones puedes sacar acerca de éstos últimos resultados ?
c) ¿A qué número se aproximan?
d) ¿Cómo se llama este número?
Actividad 4:
Ahora te propongo investigar sobre la Historia de este número tan famoso:
- ¿Quienes fueron los primeros en aproximar el número pi? ¿En qué año?
- ¿Quién le dio su símbolo actual π ?
- ¿A qué método de los que viste se pareció el que nosotros hicimos para aproximarlo?
- ¿Se conocen todas sus cifras decimales?
Recursos
http://es.wikipedia.org/wiki/Alcantarilla_(construcci%C3%B3n)
http://www.comosyporques.com/2009/07/%C2%BFpor-que-las-tapas-de-las-alcantarillas-son-redondas/
http://www.cienciaonline.com/2007/11/05/%C2%BFpor-que-las-bocas-de-las-alcantarillas-son-circulares/
http:/raul.com/blog/2007/10/24/por-que-son-las- tapas- de-las-alcantarillas-son-redondas
https://www.google.com.ar .tapas de alcantarillas en el mundo. Imágenes
Evaluación
.
Trabajo en clase y grupalmente: evaluación para cada alumno (0 y 1: desaprobado todo, debe rehacerlo solo)
|
Están todos los conceptos estudiados. (grupal)
(0 y 1: desaprobado todo, debe rehacerlo o completarlo) |
Los conceptos se tratan adecuadamente Se explica y fundamenta sin errores conceptuales. (grupal) (0 y 1: desaprobado todo, debe rehacerlo o completarlo) |
Creatividad (originalidad, ilustración de ideas, aportes propios) (grupal) |
Prolijidad en la presentación (imágenes claras, fuentes adecuadas, etc). (grupal). Se cumplen los plazos |
Total |
0 a 3 |
0 a 3 |
0 a 4 |
0 a 2 |
0 a 1 |
0 a 13 |
Notas
. Prof.Mónica Lucero-Proyectos de Ciencias en el aula.UNC
Institución Educativa done se desarrollará el proyecto CEM 123.
*Nota: toda la información que aparece en los Proyectos de Clase y WebQuest del portal educativo Eduteka es creada por los usuarios del portal.