Inicio Discusiones Matemáticas discretas Diagramas de Venn
Maestro: Si tengo dos conjuntos de números, ¿es posible que los conjuntos tengan elementos en común? ¿Puede un elemento estar en ambos conjuntos?
Estudiante 1: Bueno.5 es un número impar, y también es un número primo ..
Maestro: ¡Muy bien! Entonces hay elementos que pueden ser parte de dos conjuntos al mismo tiempo. Voy a hacer un dibujo que represente eso, y todos ustedes me pueden ayudar a poner los elementos en el sitio correcto.
Maestro: Si pongo el 5 en el sitio donde estos dos círculos se traslapan, ¿por qué creen que lo hice?
Estudiante 2: ¡Bueno, porque 5 es un número primo y un número impar, así que de acuerdo al dibujo, es claro que 5 hace parte de los dos círculos!
Maestro: ¿Cómo podríamos llamar a estos círculos?
Estudiante 2: Son conjuntos, ¿no es así?
Maestro: ¡ Exacto! ¿Puede alguien pensar en otro número que se pueda colocar en el diagrama? ¿Qué tal un número que sea impar, pero no primo?
Estudiante 3: Usted puede poner el número 9 en el círculo de números impares, pero no en el de números primos, porque 9 es divisible por 3.
Maestro: ¡La respuesta es correcta! Aquí estamos haciendo lo que se conoce como un Diagrama de Venn . ¡A veces, como en este caso, se tienen dos círculos y a veces se tienen más! Coloquemos otros elementos en este círculo, y luego trataremos de crear un Diagrama de Venn con tres círculos.
Permita que los estudiantes sugieran más elementos hasta que considere que ellos entienden los Diagramas de Venn.